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free-space wave number

global finite element matrix

element matrix for single tetrahedral element

surface area over plane

vector testing function
dominant mode
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x-,y-, and z-dimensions of rectangular sample

Cartesian  Coordinate system
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Abstract

A  simple waveguide measurement technique is presented  to determine the

complex dielectric constant of a dielectric material.  The dielectric sample is loaded in a

shorted x-band rectangular waveguide.  Using a network analyzer, the reflection coefficient of

the shorted   waveguide (loaded with sample ) is measured.    Using  the Finite Element

Method (FEM)  the exact  reflection coefficient of  the shorted  waveguide (loaded with the

sample) is determined as a function of  the dielectric constant.  Matching the measured value

of the reflection coefficient with the reflection coefficient calculated using the FEM  utilizing

the Newton-Raphson Method, an  estimate of the dielectric constant of a dielectric material is

obtained.  A comparison of estimated values of dielectric constant obtained  from simple

waveguide modal  theory and the present approach is presented.

I Introduction

  Application of materials in aerospace, microwave, microelectronics and

communication industries requires the exact knowledge of material parameters such as

permittivity and permeability.  Over the years many methods have been developed and used for

measuring permittivity  and permeability  of materials [1].  The most accurate

measurement at high frequency can be done using the high Q resonant cavity technique [2].

However, the main disadvantage of the cavity method is that the measured results are applicable

only over a narrow frequency band [2].  Electric properties of material over wide range of

εr' εr'',( ) µr' µr'',( )
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frequencies can be done with less accuracy using the transmission line methods.  In the

transmission line method an isotropic material sample with specific length is positioned in a

transmission line and the  and  are determined from the measured reflection

and transmission coefficients.  The material sample  used in these measurements is usually of a

cross section which is the same as that of the trasmission line.  The uniform cross section of the

sample is selected so that a dominant mode analysis is sufficient and accurate for measuring the

material constants.  However, when the sample selected is not of uniform cross section or the

sample occupies only a part of trasmission line cross section, then the complete modal analysis is

required to measure accurately the material properties.  The complete modal analysis is quite

complicated, if not impossible.  In such cases, when the sample cross section is different from that

of the transmission line, a numerical method such as the FEM  instead of the modal analysis is

much easier to implement  to obtain material properties.

In the present report, the  FEM is proposed to  estimate  complex permittivity of

material using a terminated rectangular waveguide.  The method described here may be easily

extended to estimate the complex permeability of material.  The material sample of specific

length but of arbitrary cross section is assumed to be present in a shorted rectangular waveguide.

The reflection coefficient at some arbitrary selected reference plane in the rectangular waveguide

is measured at a given freqeuency.  Since only determination  of permittivity is required, a single

reflection coefficent measurement suffices.    The reflection coefficient at the given frequency is

also calculated  as a function of  using the FEM.  From the calculated and measured

values of reflection coefficients and the use of Newton-Raphson Method [3], the complex

permittivity of the given material is then  determined.  The complex permittivities of Teflon and

Plexiglass obtained using the present techniques are compared with the values obtained using the

εr' εr'',( ) µr' µr'',( )

εr' εr'',( )
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standard software available with thehp ( Hewlett Packard )-8510 Network Analyze [6-7].

II Theory

(a) Direct Problem

In this section the FEM is  used to determine the reflection coefficient of a short

circuited rectangular transmission line loaded with an arbitrary shaped dielectric material. Figure

1 shows a terminated rectangular waveguide with a dielectric sample of arbitrary cross section.  It

is assumed that the waveguide is excited by a dominant TE10 mode from the right and the

reflection coefficient is measured at the reference plane P1 as shown in figure 1(a).  For the

purpose of analysis the problem is divided into two regions: Region I (  ) and Region II

( ).  Using the waveguide vector modal functions, the transverse electromagnetic fields in the

region I  are expressed as [4]

(1)

(2)

In deriving equation (1) and (2) it is assumed that only the dominant mode is incident on the inter-

face P1 and  is the amplitude of reflected modes at z=0 plane.  and  are the

rectangular waveguide vector modal functions for the dominant mode and  are

the rectangular waveguide vector modal function for  mode [4].  and  appearing in
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equations (1) and (2) are the characteristic admittance and propagation constant for  mode and

are given by

   for

 for

where  are the mode indices,  are the x- and y-dimensions, respectively, of the

rectangular waveguide, and   is the free-space wave number.  The unknown complex modal

amplitude  may be obtained in terms of the transverse electric field over the plane P1 as

follows

(3)

(4)

where  is a tangential electric field over the surface   at the reference  plane .

The electromagnetic field inside  Region II is obtained using the FEM formulation [5].

The vector wave equation for the  field is given by

(5)
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                                      = (6)

where  is the volume of Region II and  is the unit normal vector to the surface  drawn out-

ward with respect to the volume .  Using , equation (6) may be rewritten as

                                     = (7)

 Since  and , the integral on

right hand side of equation (7) may be written as

(8)

Substituting (8) in (7), we obtain

(9)
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gle tetrahedral element is represented as

(10)

where  , m=1,2,3..6 are the six complex amplitudes of electric field associated with the six

edges of the  tetrahedron, and  is the vector  basis function associated with the mth

edge of  the tetrahedron.  Detail derivation for the expression for  is given in refer-

ence [5].  Substituting equation (10) into equation (9), integration over the volume of one tetrahe-

dron  results in
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These element matrices can be assembled over all the tetrahedron elements in  Region II to obtain

a global matrix equation

(15)

The solution vector   of the matrix equation (15) is then used to determine reflection

coefficient at the reference plane  as

(16)

(b) Rectangular Waveguide Measurement System

The reflection coefficient   due to a terminated reactangular waveguide loaded with

a  given material sample piece can be measured using the procedure described in [6].   Assuming

the sample piece occupies the entire cross section of the waveguide,  an algorithm which uses the

Nicholson-Ross Technique [6-7] is used to determine the complex permittivity of the sample.

However, the algorithm which is based on the Nicholson-Ross Technique cannot be used when

the sample piece occupies part of the cross section of rectangular waveguide.  Also the

Nicholson-Ross Technique can only be used for a through measurement and not for a

measurement with terminated waveguide.  When the dielectric sample is of arbitrary shape the

procedure described in  the next section is used.

(c) Inverse Problem
This section presents  computations of complex dielectric constant of a given sample

piece from a one port measurement of the reflection coefficient.  From the given geometry of the

sample and its position in the terminated rectangular waveguide, the reflection coefficient
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 is calculated using the FEM  for assumed values of .  If  is the measured

reflection coefficient then the error in the calculated value of reflection coefficient is

. Writing the error in real and imaginary part we get

(17)

(18)

If  are incremented by small values to  such that

 and  are simultaneously zero then we can write

following matrix equation [3]
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choice of  is close to the true values of complex permittivity.

III Numerical Results

For numerical result , samples made from Teflon and Plexiglass materials are

considered.  First,  samples which occupy the entire volume enclosed by Region II are considered.

This is done for the purpose of comparison with results obtained by the present technique and the

results obtained by standard software available with thehp(-8510 Network Analyzer.   Numerical

results obtained from samples which do not occupy entire volume of the Region II are also

presented.

First, a sample piece of rectangular shape with dimension

 was cut from a Teflon sheet.  This size was

selected so that the sample piece occupies entire volume of the Region II.  The reflection

coefficient  at reference plane  was measured by placing the sample piece in a x-band

rectangular waveguide and usinghp-8510 network analyzer over the frequency band 8.2GHz-

12.40GHz.  Using the procedure described in section II, the complex permittivity of the Teflon

sample is calculated and shown in figure 3.  For the same sample complex permittivity using the

Nicholson-Ross Technique  is also calculated and presented in figure 3.  The two results agree

well except at a frequency close to 12 GHz where small resonance is detected by the FEM

procedure.   Because of very low loss characteristic of the Teflon material, the estimation of

imaginary part of complex permittivity is not very reliable.  The complex permittivity of

Plexiglass is also obatined using the present procedure and presented in figure 4 along with the

results obtained by Nicholson-Ross Technique [7].  The two results are in good agreement with

each other.

εr' εr'',( )

wx 2.29 cm, wy 1.0 cm, wz 0.947 cm= = =

P1
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In order to validate the present method for a material sample for an arbitrary shaped

sample, a Teflon sample with dimension  is cut

from a Teflon sheet. The sample is then placed in a rectangular waveguide for measurement of

reflection coefficient as shown in figure 5.  From the measured value of reflection coefficient and

following the procedure described in section II  the complex permittivity is calculated and

presented in figure 6.  For comparison, the complex permittivity obtained using full size sample

(i.e.  )  is also presented in figure 6.  From figure 6

it may be concluded that the FEM procedure can be used to determine the complex permittivity of

dielectric material using an arbitrarily shaped sample.

Figure 7 shows the real part of complex permittivity of Plexiglass obtained using  a

sample with dimension  and placed in  Region II

as shown in figure 5.  The real part of complex permittivity of Plexiglass obtained using full size

sample is also presented in figure 7.  The two results are in good agreement within a range of

uncertainty specified by manufacturer.

IV Conclusion

A FEM procedure in conjunction with the Newton-Raphson Method has been

presented to determine complex permittivity of a dielectric material using an arbitrarily shaped

sample.   The arbitrarily shaped sample of a given dielectric material is placed in a terminated x-

band rectangular waveguide.  The reflection coefficent at a  reference plane is measured withhp-

8510 Network Analyzer.  For the same configuration of a terminated x-band waveguide loaded

with the sample piece,  the  reflection coefficient is calculated as a function of complex dielectric

constant using the FEM .  The Newton-Raphson Method is then used to determine the complex

wx 1.58 cm, wy 0.785cm, wz 0.632cm= = =

wx 2.29 cm, wy 1.0 cm, wz 0.947 cm= = =

wx 1.58 cm, wy 0.785cm, wz 0.632cm= = =
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dielectric constant by matching the calculated value with the measured value.  The measured

values of complex permittivity of Teflon and Plexiglass using the FEM method are in good

agreement with the  results obtained by the Nicholson-Ross Technique.
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